
EASYSim: Energy-aware embedded system simulator
Strahinja Janković, Dragomir El Mezeni, Vladimir Petrović, Ivan Popović, Jelena

Popović-Božović and Lazar Saranovac

Abstract - In this paper energy-aware embedded system

simulator is presented. Simulation model supports describing

behavior of different hardware and software subsystems and

power and performance management algorithms. Using presented

simulator, two algorithms with different optimization goals were

tested: power management of single processor using Dynamic

Frequency Scaling and multiprocessor Load Balancing. Presented

simulator can be used for development of scheduling and power

management algorithms, as well as power consumption estimation

of embedded systems.

Keywords – Embedded systems, Multiprocessor, Power

Management, Simulation.

I. INTRODUCTION

Power management is an important topic for modern

embedded systems. It can be used to reduce cooling costs

and electricity bills of stationary systems and prolong

battery life of mobile systems. Power management

techniques can be divided into static and dynamic. Static

power management techniques are used to keep system that

is idle in a power-efficient state, with System level suspend

as an example. Dynamic power management [1] techniques

are used on a component (or group of components) level

and they work by keeping a component that is idle in a low

power state, like clock and power gating, or by reducing

performance if a component is not fully utilized, like

Dynamic Voltage and Frequency Scaling, DVFS.

Modern embedded systems can be complex, having

heterogeneous multiprocessor architecture [2], [3], and

many different hardware accelerators and peripherals.

Measuring power consumption of such system, or some

part of the system, can be a challenging task. Also, because

of fast development process of modern embedded systems

performance and power consumption of such systems

needs to be evaluated even before hardware prototypes for

all components in the system are available.

On the other hand, simulated environment makes

development easier, since it allows different aspects of the

system to be modeled and system to be analyzed on

different abstraction levels. It is much easier to develop

new power management algorithms and evaluate power

consumption of an embedded system in a simulated

environment because it is easy to control testing conditions

and to reproduce certain testing scenario. It is also easier to

automate testing and analyze feasibility and performance

before hardware is available.

Different multiprocessor simulators have been

previously developed. Many of these simulators are ISA-

level simulators, which makes them too complex for

describing and evaluating algorithms, or do not take power

consumption into account. WSim [4] is an ISA-level

simulator of MSP430 and ATMega microcontrollers, used

for wireless sensor networks simulation. It is possible to

evaluate energy consumption using WSim, but it is limited

to only these two architectures. Gem5 [5] is an ISA-level

simulator which supports several architectures (Alpha,

ARM, SPARC and x86), with different levels of details and

possibility to evaluate power consumption. Simics [6] is a

full system simulator, which allows detailed simulation of

hardware subsystems, but it does not take energy

consumption into account. SimSo [7] is multiprocessor

simulator used to evaluate multiprocessor scheduling

algorithms, but it does not take energy consumption into

account. STORM [8] is also multiprocessor simulator for

scheduling algorithms evaluation and it takes energy

consumption into account. Unlike previous works which

aim at accurate ISA-level simulation or are focused

primarily on multiprocessor scheduling algorithms, we

propose the new multiprocessor Energy-Aware embedded

SYstem Simulator (EASYSim) for development and

evaluation of algorithms for performance and power

management.

The rest of the paper is organized as follows. Key

concepts and simulation model are defined in Section 2.

Implementation details for one possible realization of

defined concepts are described in Section 3. Functional

verification of simulator is presented in Section 4 by

detailed description of two common optimization

scenarios: DFS of single processor and load balancing of

multiprocessor system. Discussion and future perspectives

are given in Section 5.

II. Simulation model

Key elements of presented simulator are simulation

environment, engine and manager.

Simulation environment is collection of simulation

objects. Every simulation object has following attributes:

power consumption, execution time and synchronization

interface. Simulation objects can have parameters which

modify their attributes. For instance, objects that are used

Strahinja Janković, Dragomir El Mezeni, Vladimir Petrović,

Ivan Popović, Jelena Popović-Božović and Lazar Saranovac are

with the Department of Electronics, School of Electronic

Engineering, University of Belgrade, Bulevar kralja Aleksandra

73, 11000 Belgrade, Serbia, E-mail: {jankovics, elmezeni,

petrovicv, popovici, jelena, laza}@etf.bg.ac.rs.

to emulate hardware components can have performance in

certain operating state (e.g. CPU frequency) as parameter

that affects power consumption attribute, or latency caused

by transitioning from one state to another as parameter that

affects execution time. Also, objects that are used to

emulate software components can have priority as

parameter that affects synchronization interface. Simulation

objects can be grouped to form complex objects and

different dependencies among them can be defined.

Simulation engine is used to execute simulation. It is a

discrete event simulator based on SimPy [9]. Simulation

engine provides methods for synchronization and

communication between objects.

Simulation manager is power and performance

management algorithm. If this algorithm is implemented in

software, hardware or combination of two, it contributes to

the power consumption of simulated system as any

simulation object. If simulation manager is an external

influence, then its execution does not consume power.

Energy consumption of simulated system is obtained by

summing energy consumption of each individual

simulation object,


i

OBJiSYS EE (1)

Total energy consumed by object iOBJ is


j

jjOBJi TPE , (2)

where j represents a combination of iOBJ parameters

(e.g. frequency and supply voltage combination), jP is

average power consumption and jT is time period while

parameter combination j is active. Since simulation

objects can be used to represent both software and

hardware, power consumption needs to be defined for

either of these, depending on available information. There

should be no overlapping in power consumption definition,

in order to obtain accurate measurements.

III. IMPLEMENTATION EXAMPLE

In order to demonstrate how previously defined

concepts can be used for realization of an evaluation

system, example implementation that supports a CPU core

model and program task as simulation objects was created.

A. CPU core model

Implemented CPU core model has following

parameters: frequency and latency. Both parameters are

provided as discrete values. For easier management, active

and inactive power states are introduced [10] (Fig 1.).

Power consumption is given for each individual state.

Active power states have non-zero frequency and inactive

power states have non-zero latency. Also, idle state is

defined which has both frequency and latency equal to

zero. Since CPU power consumption depends on

utilization, this is modeled by calculating average of energy

spent in active and idle state. If processor spends 0AT time

in active state 0A and time 0ATT  in idle state, power

consumed during time period T can be calculated as

 IA
A

I
AIAA PP

T

T
P

T

TTPTP
P 


 0

0000)(
 (3)

Fig. 1. CPU core state machine

Idle state is entered every time CPU core has no

program load. Interface for triggering frequency change

and transitioning into low power state is provided. CPU

core is single-threaded and supports external interrupt

handling. Each CPU core has unique ID.

Power model, i.e. list of supported power states for a

CPU core is configured using a JSON file (Fig 2.).

Fig. 2. CPU core model description

{

 "cpu0": {

 "active": [{

 "id": 0,

 "name": "p0",

 "power": 120,

 "frequency": 5

 }],

 "idle": [{

 "id": 0,

 "name": "idle",

 "power": 10

 }],

 "sleep": [{

 "id": 0,

 "name": "s0",

 "power": 5,

 "latency": 1

 }]

 }

}

With this approach multiple CPU cores, each having its

own power state model, can be instantiated and

multiprocessor systems can be simulated.

B. Program load model

Program load consists of tasks. Tasks are simulation

objects which have priority as parameter. Priorities from 0

to 63 are supported, where 0 is the highest and 63 the

lowest priority. Tasks are modeled as number of single

clock instructions that CPU core executes.

After tasks are initialized, they are ready to execute

(Fig. 3). If multiple tasks are ready, then task with highest

priority becomes active. Tasks can be pre-empted by tasks

with higher priority. Tasks can also become blocked while

waiting on a synchronization element to become available.

After synchronization element becomes available, tasks

waiting on it become ready to execute.

Fig. 3. Task state machine

IV. RESULTS

Functionalities of the simulation system example are

verified using two different optimization algorithms. First

algorithm is single processor Dynamic Frequency scaling,

which is a power management algorithm. Second algorithm

is Multiprocessor Load Balancing.

A. Single processor DFS

DFS algorithm presented in [11] has been implemented

in simulator. Single CPU core is used with power states

presented in Table 1. Two types of tasks are executing on

the CPU core, time-critical task (Task #1 in Fig. 4) and

non-critical task (Task #2 in Fig. 4). DFS algorithm

(simulation manager) is implemented as two tasks, the

DFSHP and DFSLP task. DFSHP task is used to capture

timestamps of start and end of execution of time-critical

task. DFSLP task is used to calculate CPU utilization of

time-critical task execution and calculate next frequency

that is to be configured in order to reduce power

consumption. Programming model and task

synchronization is presented in Fig 4.

 TABLE 1

PROCESSOR STATES DESCRIPTION

CPU active states CPU inactive states

State
Power

[mW]

Freq

[MHz]
State

Power

[mW]

Latency

[us]

A0 160 8 idle 10 N/A

A1 119 6 S0 1 1

A2 75 4 S1 0.1 10

A3 43 2

For configured time-critical task workload of 22000

instructions and incoming event every 16ms, task execution

diagram is presented in Fig 5. With this configuration, DFS

algorithm provides 9% power savings.

Fig. 4. Programming model and task synchronization for single

processor DFS example

Fig. 5. Task execution diagram for DFS

B. Multiprocessor load balancing

Typical multiprocessor embedded system can have

several processor cores each with different power model

and working at different clock frequency. Critical

processing is usually distributed among these processor

cores in a form of parallel programming threads. Although

simulator can support different system architectures,

presented results consider centralized architecture with

multiple CPUs each executing one thread of a critical

programming task and central, manager CPU dedicated for

results aggregation and system control. Programming

model and task synchronization is depicted in Fig 6.

CPU0 CPU1 CPU2 CPU3

external
event

external
event

result
aggregation

Fig. 6. Programming model and task synchronization for typical

centralized multiprocessor embedded system

In the presented simulation scenario start of processing

on all cores in the system is triggered by external event

which is generated periodically inside simulation

environment. Manager CPU waits while all other CPUs in

the system finish their processing to aggregate results and

provide final output. Since tasks executing on different

cores can have very different complexities in terms of

instruction count, and since each core can work at different

frequency, load of different cores in the system can vary

very much. This particularly means that some cores will

spend majority of the time in Idle or Low power state.

Although this can be beneficial in terms of total energy

consumption, peak power that they exhibit can be very

high. Load balancing is a process of equalizing utilization

of all working cores in the system. Balancing the load of

multiple processors will minimize this peak power while

ensuring that all timing deadlines are met. Architecture of

embedded multiprocessor system with property of dynamic

load balancing is shown in Figure 7. Cores CPU0, CPU1

and CPU2 are worker cores while CPU3 is manager core

responsible for result aggregation and power optimization

of the entire system. Each core measures its own utilization

in the same manner as explained previously in the DFS

example. Statistics about utilization along with processor’s

unique ID are written into statistics shared memory.

CPU1 CPU2

statistics

CPU3

CPU0

hint

Fig. 7. Architecture of multiprocessor system with 3 worker and

1 manager core, with ability of load balancing

Manager core CPU3 waits until all worker cores update

their statistics to execute optimization algorithm. Output of

the optimization algorithm could be the set of

recommended working frequencies for each worker core in

the system. However, there are no guarantees that this

particular optimum can be achieved since all cores have

different discrete set of available active states and different

working frequencies. Also, changing utilization of one

CPU core can influence utilization of other CPU cores if

programming threads which are executing on them are

interdependent. On the other hand, iterative step by step

optimization assumes that at the each optimization period

manager core will send just one optimization hint to the

worker core with the least optimal utilization whether it

should increase or decrease its working frequency. Upon

receiving this hint worker core initiates transition to the

next closest state with larger or lower working frequency

depending on the actual hint value, as it is shown in Fig. 8.

A0 A1 A2

dec dec dec

incincinc

Fig. 8. State transitions triggered by the optimization hint

When one processor changes its state, utilization of

other processors in the system can also change because of

dependencies between them. At the next optimization step

manager will calculate new hint value which will be based

on this newly established system utilization and thus will

move the whole system step by step to the optimal working

mode.

Simulator is tested with two different scenarios of load

balancing of heterogeneous multiprocessor system with 2

worker and 1 manager core.

In the first scenario each worker core is executing same

amount of instructions. However, they have different

starting frequencies and different set of available active

power states as it is shown in Table 2. Because of this,

initial utilizations of these two worker cores will be very

different as it is shown in Fig. 9. a).

 TABLE 2

PROCESSOR STATES DESCRIPTION

CPU0 active states CPU1 active states

State
Freq

[MHz]

Power

[mW]
State

Freq

[MHz]

Power

[mW]

A0 20 200 A0 5 120

A1 8 80 A1 2 48

A2 5 50 A2 1 21

A3 2 20

A4 1 10

Manager core detects this load imbalance and sends a

hint to CPU0 to decrease its working frequency resulting in

transition from state A0 to the state A1, Fig. 9. b). At the

next optimization period manager core detects that CPU0

still has much lower utilization than CPU1 and sends

another hint for lowering working frequency resulting in

transition to the state A2, Fig. 9. c). Since in the state A2

processor CPU1 has the same working frequency as CPU0

and since they are executing same programming load their

utilization will be equal.

(a)

(b)

(c)

Fig. 9. Load balancing process of different worker cores

executing same programming load

In the second scenario two same worker cores with the

set of active power states shown in Table 3, are executing

different amount of programming load. Programming

thread executing on CPU0 has 3000 instructions while

programming thread executing on CPU1 has 1300

instructions. This will cause unequal utilization of these

two worker cores. CPU1 will have much lower utilization

than CPU0, Fig. 10. a).

 TABLE 3

PROCESSOR STATES DESCRIPTION

CPU active states

State
Freq

[MHz]

Power

[mW]

A0 5 120

A1 2 48

A2 1 21

Manager core detects this load imbalance and sends a

hint to CPU1 to decrease its working frequency, resulting

in transition from state A0 to the state A1, Fig. 10. b). After

this transition utilization of these cores are almost equal.

Since small imbalance in utilization is tolerated by the

manager core, no further hints will be sent for performance

adjustment.

(a)

(b)

Fig. 10. Load balancing process of worker cores with same

characteristics executing different amount of programming load

V. Discussion

Energy-aware embedded system simulator is presented.

Example implementation is provided based on presented

concept and its functionality has been verified using two

algorithms with different optimization goals, power

management and load balancing.

Compared to already existing simulators, presented

concept provides simple interface and allows easy system

model description, while taking into account power

consumption of the system. Presented concept can be used

to develop and evaluate scheduling, and power and

performance management algorithms for single processor

and multiprocessor embedded systems. Simulation model

can be further extended to incorporate more complex

entities and to provide means to accurately estimate system

power consumption.

ACKNOWLEDGEMENT

This work was partially supported by the Serbian

Ministry of Education and Science under technology

development project TR 32043, for the period of 2011 –

2015.

REFERENCES

[1] L. Benini, A Bogliolo, and G. De Micheli, “A survey of

design techniques for system-level dynamic power

management”, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 8(3):299–316, June 2000.

[2] Xilinx Inc.,”UltraScale MPSoC Architecture”,

http://www.xilinx.com/products/technology/ultrascale-

mpsoc.html, visited November 2015.

[3] ARM Ltd., “big.LITTLE Technology”,

https://www.arm.com/products/processors/technologies

/biglittleprocessing.php, visited November 2015.

[4] G. Chelius, A. Fraboulet, and E. Fleury, “Worldsens: a

fast and accurate development framework for sensor

network applications”, In The 22nd Annual ACM

Symposium on Applied Computing (SAC 2007), Seoul,

Korea, March 2007. ACM.

[5] Nathan Binkert et al., “The gem5 Simulator”, May

2011, ACM SIGARCH Computer Architecture News.

[6] Peter S. Magnusson et al. “Simics: A Full System

Simulation Platform”, Computer 35, 2 (February 2002),

50-58. DOI=http://dx.doi.org/10.1109/2.982916

[7] Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-

Marie Déplanche, “SimSo: A Simulation Tool to

Evaluate Real-Time Multiprocessor Scheduling

Algorithms”, 5th International Workshop on Analysis

Tools and Methodologies for Embedded and Real-time

Systems (WATERS), Jul 2014, Madrid, Spain. 6 p.,

2014.

[8] Urunuela, Richard, Anne-Marie Déplanche, and Yvon

Trinquet. "Storm a simulation tool for real-time

multiprocessor scheduling evaluation." Emerging

Technologies and Factory Automation (ETFA), 2010

IEEE Conference on. IEEE, 2010.

[9] Muller, K., and Tony Vignaux. “Simpy: Simulating

systems in python.” ONLamp. com Python Devcenter

(2003).

[10] Advanced Configuration and Power Interface, rev.

5.0a, Nov. 2013. http://www.acpi.info/spec50a.htm

[11] I. T. Popovic and S. P. Jankovic, “Frequency scaling

for low-power embedded system,” in

Telecommunications Forum (TELFOR), 2012 20th,

2012, pp. 1096–1099.

