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Abstract - In this paper energy-aware embedded system 

simulator is presented. Simulation model supports describing 

behavior of different hardware and software subsystems and 

power and performance management algorithms. Using presented 

simulator, two algorithms with different optimization goals were 

tested: power management of single processor using Dynamic 

Frequency Scaling and multiprocessor Load Balancing. Presented 

simulator can be used for development of scheduling and power 

management algorithms, as well as power consumption estimation 

of embedded systems. 
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I. INTRODUCTION 
 

Power management is an important topic for modern 

embedded systems. It can be used to reduce cooling costs 

and electricity bills of stationary systems and prolong 

battery life of mobile systems. Power management 

techniques can be divided into static and dynamic. Static 

power management techniques are used to keep system that 

is idle in a power-efficient state, with System level suspend 

as an example. Dynamic power management [1] techniques 

are used on a component (or group of components) level 

and they work by keeping a component that is idle in a low 

power state, like clock and power gating, or by reducing 

performance if a component is not fully utilized, like 

Dynamic Voltage and Frequency Scaling, DVFS. 

Modern embedded systems can be complex, having 

heterogeneous multiprocessor architecture [2], [3], and 

many different hardware accelerators and peripherals. 

Measuring power consumption of such system, or some 

part of the system, can be a challenging task. Also, because 

of fast development process of modern embedded systems 

performance and power consumption of such systems 

needs to be evaluated even before hardware prototypes for 

all components in the system are available. 

On the other hand, simulated environment makes 

development easier, since it allows different aspects of the 

system to be modeled and system to be analyzed on 

different abstraction levels. It is much easier to develop 

new power management algorithms and evaluate power 

consumption of an embedded system in a simulated 

environment because it is easy to control testing conditions 

and to reproduce certain testing scenario. It is also easier to 

automate testing and analyze feasibility and performance 

before hardware is available.  

Different multiprocessor simulators have been 

previously developed. Many of these simulators are ISA-

level simulators, which makes them too complex for 

describing and evaluating algorithms, or do not take power 

consumption into account. WSim [4] is an ISA-level 

simulator of MSP430 and ATMega microcontrollers, used 

for wireless sensor networks simulation. It is possible to 

evaluate energy consumption using WSim, but it is limited 

to only these two architectures. Gem5 [5] is an ISA-level 

simulator which supports several architectures (Alpha, 

ARM, SPARC and x86), with different levels of details and 

possibility to evaluate power consumption. Simics [6] is a 

full system simulator, which allows detailed simulation of 

hardware subsystems, but it does not take energy 

consumption into account. SimSo [7] is multiprocessor 

simulator used to evaluate multiprocessor scheduling 

algorithms, but it does not take energy consumption into 

account. STORM [8] is also multiprocessor simulator for 

scheduling algorithms evaluation and it takes energy 

consumption into account. Unlike previous works which 

aim at accurate ISA-level simulation or are focused 

primarily on multiprocessor scheduling algorithms, we 

propose the new multiprocessor Energy-Aware embedded 

SYstem Simulator (EASYSim) for development and 

evaluation of algorithms for performance and power 

management. 

The rest of the paper is organized as follows. Key 

concepts and simulation model are defined in Section 2. 

Implementation details for one possible realization of 

defined concepts are described in Section 3. Functional 

verification of simulator is presented in Section 4 by 

detailed description of two common optimization 

scenarios: DFS of single processor and load balancing of 

multiprocessor system. Discussion and future perspectives 

are given in Section 5. 

 

II. Simulation model 
 

Key elements of presented simulator are simulation 

environment, engine and manager. 

Simulation environment is collection of simulation 

objects. Every simulation object has following attributes: 

power consumption, execution time and synchronization 

interface. Simulation objects can have parameters which 

modify their attributes. For instance, objects that are used 
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to emulate hardware components can have performance in 

certain operating state (e.g. CPU frequency) as parameter 

that affects power consumption attribute, or latency caused 

by transitioning from one state to another as parameter that 

affects execution time. Also, objects that are used to 

emulate software components can have priority as 

parameter that affects synchronization interface. Simulation 

objects can be grouped to form complex objects and 

different dependencies among them can be defined. 

Simulation engine is used to execute simulation. It is a 

discrete event simulator based on SimPy [9]. Simulation 

engine provides methods for synchronization and 

communication between objects. 

Simulation manager is power and performance 

management algorithm. If this algorithm is implemented in 

software, hardware or combination of two, it contributes to 

the power consumption of simulated system as any 

simulation object. If simulation manager is an external 

influence, then its execution does not consume power. 

Energy consumption of simulated system is obtained by 

summing energy consumption of each individual 

simulation object, 
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Total energy consumed by object iOBJ  is 
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where j  represents a combination of iOBJ  parameters 

(e.g. frequency and supply voltage combination), jP  is 

average power consumption and jT  is time period while 

parameter combination j  is active. Since simulation 

objects can be used to represent both software and 

hardware, power consumption needs to be defined for 

either of these, depending on available information. There 

should be no overlapping in power consumption definition, 

in order to obtain accurate measurements. 

 

III. IMPLEMENTATION EXAMPLE 
 

In order to demonstrate how previously defined 

concepts can be used for realization of an evaluation 

system, example implementation that supports a CPU core 

model and program task as simulation objects was created. 

 

A. CPU core model 

 

Implemented CPU core model has following 

parameters: frequency and latency. Both parameters are 

provided as discrete values. For easier management, active 

and inactive power states are introduced [10] (Fig 1.). 

Power consumption is given for each individual state. 

Active power states have non-zero frequency and inactive 

power states have non-zero latency. Also, idle state is 

defined which has both frequency and latency equal to 

zero. Since CPU power consumption depends on 

utilization, this is modeled by calculating average of energy 

spent in active and idle state. If processor spends 0AT  time 

in active state 0A  and time 0ATT   in idle state, power 

consumed during time period T  can be calculated as 
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Fig. 1.  CPU core state machine 

 

Idle state is entered every time CPU core has no 

program load. Interface for triggering frequency change 

and transitioning into low power state is provided. CPU 

core is single-threaded and supports external interrupt 

handling. Each CPU core has unique ID. 

Power model, i.e. list of supported power states for a 

CPU core is configured using a JSON file (Fig 2.). 

 

 
Fig. 2.  CPU core model description 

{ 

    "cpu0": { 

        "active": [{ 

            "id": 0, 

            "name": "p0", 

            "power": 120, 

            "frequency": 5 

        }], 

        "idle": [{ 

            "id": 0, 

            "name": "idle", 

            "power": 10 

        }], 

        "sleep": [{ 

            "id": 0, 

            "name": "s0", 

            "power": 5, 

            "latency": 1 

        }] 

    } 

} 



With this approach multiple CPU cores, each having its 

own power state model, can be instantiated and 

multiprocessor systems can be simulated. 

 

B. Program load model 

 

Program load consists of tasks. Tasks are simulation 

objects which have priority as parameter. Priorities from 0 

to 63 are supported, where 0 is the highest and 63 the 

lowest priority. Tasks are modeled as number of single 

clock instructions that CPU core executes. 

After tasks are initialized, they are ready to execute 

(Fig. 3). If multiple tasks are ready, then task with highest 

priority becomes active. Tasks can be pre-empted by tasks 

with higher priority. Tasks can also become blocked while 

waiting on a synchronization element to become available. 

After synchronization element becomes available, tasks 

waiting on it become ready to execute. 

 

 
 

Fig. 3.  Task state machine 

 

IV. RESULTS 
 

Functionalities of the simulation system example are 

verified using two different optimization algorithms. First 

algorithm is single processor Dynamic Frequency scaling, 

which is a power management algorithm. Second algorithm 

is Multiprocessor Load Balancing. 

 

A. Single processor DFS 

 

DFS algorithm presented in [11] has been implemented 

in simulator. Single CPU core is used with power states 

presented in Table 1. Two types of tasks are executing on 

the CPU core, time-critical task (Task #1 in Fig. 4) and 

non-critical task (Task #2 in Fig. 4). DFS algorithm 

(simulation manager) is implemented as two tasks, the 

DFSHP and DFSLP task. DFSHP task is used to capture 

timestamps of start and end of execution of time-critical 

task. DFSLP task is used to calculate CPU utilization of 

time-critical task execution and calculate next frequency 

that is to be configured in order to reduce power 

consumption. Programming model and task 

synchronization is presented in Fig 4. 

   TABLE 1 

PROCESSOR STATES DESCRIPTION 

CPU active states CPU inactive states 

State 
Power 

[mW] 

Freq 

[MHz] 
State 

Power 

[mW] 

Latency 

[us] 

A0 160 8 idle 10 N/A 

A1 119 6 S0 1 1 

A2 75 4 S1 0.1 10 

A3 43 2    

 

For configured time-critical task workload of 22000 

instructions and incoming event every 16ms, task execution 

diagram is presented in Fig 5. With this configuration, DFS 

algorithm provides 9% power savings. 

 

 
 

Fig. 4.  Programming model and task synchronization for single 

processor DFS example 
 

 
 

Fig. 5.  Task execution diagram for DFS 
 

B. Multiprocessor load balancing 

 

Typical multiprocessor embedded system can have 

several processor cores each with different power model 

and working at different clock frequency. Critical 

processing is usually distributed among these processor 

cores in a form of parallel programming threads. Although 



simulator can support different system architectures, 

presented results consider centralized architecture with 

multiple CPUs each executing one thread of a critical 

programming task and central, manager CPU dedicated for 

results aggregation and system control. Programming 

model and task synchronization is depicted in Fig 6. 
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Fig. 6.  Programming model and task synchronization for typical 

centralized multiprocessor embedded system 

 

In the presented simulation scenario start of processing 

on all cores in the system is triggered by external event 

which is generated periodically inside simulation 

environment. Manager CPU waits while all other CPUs in 

the system finish their processing to aggregate results and 

provide final output. Since tasks executing on different 

cores can have very different complexities in terms of 

instruction count, and since each core can work at different 

frequency, load of different cores in the system can vary 

very much. This particularly means that some cores will 

spend majority of the time in Idle or Low power state. 

Although this can be beneficial in terms of total energy 

consumption, peak power that they exhibit can be very 

high. Load balancing is a process of equalizing utilization 

of all working cores in the system. Balancing the load of 

multiple processors will minimize this peak power while 

ensuring that all timing deadlines are met. Architecture of 

embedded multiprocessor system with property of dynamic 

load balancing is shown in Figure 7. Cores CPU0, CPU1 

and CPU2 are worker cores while CPU3 is manager core 

responsible for result aggregation and power optimization 

of the entire system. Each core measures its own utilization 

in the same manner as explained previously in the DFS 

example. Statistics about utilization along with processor’s 

unique ID are written into statistics shared memory.  

CPU1 CPU2

statistics

CPU3

CPU0

hint

 
 

Fig. 7.  Architecture of multiprocessor system with 3 worker and 

1 manager core, with ability of load balancing 

 

Manager core CPU3 waits until all worker cores update 

their statistics to execute optimization algorithm. Output of 

the optimization algorithm could be the set of 

recommended working frequencies for each worker core in 

the system. However, there are no guarantees that this 

particular optimum can be achieved since all cores have 

different discrete set of available active states and different 

working frequencies. Also, changing utilization of one 

CPU core can influence utilization of other CPU cores if 

programming threads which are executing on them are 

interdependent. On the other hand, iterative step by step 

optimization assumes that at the each optimization period 

manager core will send just one optimization hint to the 

worker core with the least optimal utilization whether it 

should increase or decrease its working frequency. Upon 

receiving this hint worker core initiates transition to the 

next closest state with larger or lower working frequency 

depending on the actual hint value, as it is shown in Fig. 8.  

A0 A1 A2

dec dec dec
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Fig. 8.  State transitions triggered by the optimization hint 

 

When one processor changes its state, utilization of 

other processors in the system can also change because of 

dependencies between them. At the next optimization step 

manager will calculate new hint value which will be based 

on this newly established system utilization and thus will 

move the whole system step by step to the optimal working 

mode.  

Simulator is tested with two different scenarios of load 

balancing of heterogeneous multiprocessor system with 2 

worker and 1 manager core. 

In the first scenario each worker core is executing same 

amount of instructions. However, they have different 



starting frequencies and different set of available active 

power states as it is shown in Table 2. Because of this, 

initial utilizations of these two worker cores will be very 

different as it is shown in Fig. 9. a). 

 
   TABLE 2 

PROCESSOR STATES DESCRIPTION 

CPU0 active states CPU1 active states 

State 
Freq 

[MHz] 

Power 

[mW] 
State 

Freq 

[MHz] 

Power 

[mW] 

A0 20 200 A0 5 120 

A1 8 80 A1 2 48 

A2 5 50 A2 1 21 

A3 2 20    

A4 1 10    

 

Manager core detects this load imbalance and sends a 

hint to CPU0 to decrease its working frequency resulting in 

transition from state A0 to the state A1, Fig. 9. b). At the 

next optimization period manager core detects that CPU0 

still has much lower utilization than CPU1 and sends 

another hint for lowering working frequency resulting in 

transition to the state A2, Fig. 9. c). Since in the state A2 

processor CPU1 has the same working frequency as CPU0 

and since they are executing same programming load their 

utilization will be equal. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.  Load balancing process of different worker cores 

executing same programming load 
 

In the second scenario two same worker cores with the 

set of active power states shown in Table 3, are executing 

different amount of programming load. Programming 

thread executing on CPU0 has 3000 instructions while 

programming thread executing on CPU1 has 1300 

instructions. This will cause unequal utilization of these 

two worker cores. CPU1 will have much lower utilization 

than CPU0, Fig. 10. a). 
 

 

 

 

 

   TABLE 3 

PROCESSOR STATES DESCRIPTION 

CPU active states 

State 
Freq 

[MHz] 

Power 

[mW] 

A0 5 120 

A1 2 48 

A2 1 21 

 

Manager core detects this load imbalance and sends a 

hint to CPU1 to decrease its working frequency, resulting 

in transition from state A0 to the state A1, Fig. 10. b). After 

this transition utilization of these cores are almost equal. 

Since small imbalance in utilization is tolerated by the 

manager core, no further hints will be sent for performance 

adjustment. 

 

 
(a) 

 
(b) 

Fig. 10.  Load balancing process of worker cores with same 

characteristics executing different amount of programming load 
 

V. Discussion 
 

Energy-aware embedded system simulator is presented. 

Example implementation is provided based on presented 

concept and its functionality has been verified using two 

algorithms with different optimization goals, power 

management and load balancing. 

Compared to already existing simulators, presented 

concept provides simple interface and allows easy system 

model description, while taking into account power 

consumption of the system. Presented concept can be used 

to develop and evaluate scheduling, and power and 

performance management algorithms for single processor 

and multiprocessor embedded systems. Simulation model 

can be further extended to incorporate more complex 

entities and to provide means to accurately estimate system 

power consumption. 

 

ACKNOWLEDGEMENT 
 

This work was partially supported by the Serbian 

Ministry of Education and Science under technology 

development project TR 32043, for the period of 2011 – 

2015. 

 



REFERENCES 
 

[1] L. Benini, A Bogliolo, and G. De Micheli, “A survey of 

design techniques for system-level dynamic power 

management”, IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, 8(3):299–316, June 2000. 

[2] Xilinx Inc.,”UltraScale MPSoC Architecture”, 

http://www.xilinx.com/products/technology/ultrascale-

mpsoc.html, visited November 2015. 

[3] ARM Ltd., “big.LITTLE Technology”, 

https://www.arm.com/products/processors/technologies

/biglittleprocessing.php, visited November 2015. 

[4] G. Chelius, A. Fraboulet, and E. Fleury, “Worldsens: a 

fast and accurate development framework for sensor 

network applications”, In The 22nd Annual ACM 

Symposium on Applied Computing (SAC 2007), Seoul, 

Korea, March 2007. ACM. 

[5] Nathan Binkert et al., “The gem5 Simulator”, May 

2011, ACM SIGARCH Computer Architecture News. 

[6] Peter S. Magnusson et al. “Simics: A Full System 

Simulation Platform”, Computer 35, 2 (February 2002), 

50-58. DOI=http://dx.doi.org/10.1109/2.982916 

[7] Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-

Marie Déplanche, “SimSo: A Simulation Tool to 

Evaluate Real-Time Multiprocessor Scheduling 

Algorithms”, 5th International Workshop on Analysis 

Tools and Methodologies for Embedded and Real-time 

Systems (WATERS), Jul 2014, Madrid, Spain. 6 p., 

2014. 

[8] Urunuela, Richard, Anne-Marie Déplanche, and Yvon 

Trinquet. "Storm a simulation tool for real-time 

multiprocessor scheduling evaluation." Emerging 

Technologies and Factory Automation (ETFA), 2010 

IEEE Conference on. IEEE, 2010. 

[9] Muller, K., and Tony Vignaux. “Simpy: Simulating 

systems in python.” ONLamp. com Python Devcenter 

(2003). 

[10] Advanced Configuration and Power Interface, rev. 

5.0a, Nov. 2013. http://www.acpi.info/spec50a.htm 

[11] I. T. Popovic and S. P. Jankovic, “Frequency scaling 

for low-power embedded system,” in 

Telecommunications Forum (TELFOR), 2012 20th, 

2012, pp. 1096–1099. 

 

 




